[PDF] Nanophysics: Coherence and Transport H?l?ne Bouchiat, Yuval Gefen, Sophie Gu?ron Engineering Diploma 1993 D.E.A. de Physique des Solides 1994 Ph.D. Universit? Paris VI 1997, Gilles Montambaux Ph.D. Thesis 1985, Jean Dalibard Ph.D.

$19.99

The developments of nanofabrication in the past years have enabled the design of electronic systems that exhibit spectacular signatures of quantum coherence. Nanofabricated quantum wires and dots containing a small number of electrons are ideal experimental playgrounds for probing electron-electron interactions and their interplay with disorder. Going down to even smaller scales, molecules such as carbon nanotubes, fullerenes or hydrogen molecules can now be inserted in nanocircuits. Measurements of transport through a single chain of atoms have been performed as well. Much progress has also been made in the design and fabrication of superconducting and hybrid nanostructures, be they normal/superconductor or ferromagnetic/superconductor. Quantum coherence is then no longer that of individual electronic states, but rather that of a superconducting wavefunction of a macroscopic number of Cooper pairs condensed in the same quantum mechanical state. Beyond the study of linear response regime, the physics of non-equilibrium transport (including non-linear transport, rectification of a high frequency electric field as well as shot noise) has received much attention, with significant experimental and theoretical insights. All these quantities exhibit very specific signatures of the quantum nature of transport, which cannot be obtained from basic conductance measurements.

Reviews

There are no reviews yet.

Be the first to review “[PDF] Nanophysics: Coherence and Transport H?l?ne Bouchiat, Yuval Gefen, Sophie Gu?ron Engineering Diploma 1993 D.E.A. de Physique des Solides 1994 Ph.D. Universit? Paris VI 1997, Gilles Montambaux Ph.D. Thesis 1985, Jean Dalibard Ph.D.”

Your email address will not be published. Required fields are marked *

Chat with Us

Please provide your details to start chatting: